(k+4)(k+7)=k^2+28

Simple and best practice solution for (k+4)(k+7)=k^2+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (k+4)(k+7)=k^2+28 equation:


Simplifying
(k + 4)(k + 7) = k2 + 28

Reorder the terms:
(4 + k)(k + 7) = k2 + 28

Reorder the terms:
(4 + k)(7 + k) = k2 + 28

Multiply (4 + k) * (7 + k)
(4(7 + k) + k(7 + k)) = k2 + 28
((7 * 4 + k * 4) + k(7 + k)) = k2 + 28
((28 + 4k) + k(7 + k)) = k2 + 28
(28 + 4k + (7 * k + k * k)) = k2 + 28
(28 + 4k + (7k + k2)) = k2 + 28

Combine like terms: 4k + 7k = 11k
(28 + 11k + k2) = k2 + 28

Reorder the terms:
28 + 11k + k2 = 28 + k2

Add '-28' to each side of the equation.
28 + 11k + -28 + k2 = 28 + -28 + k2

Reorder the terms:
28 + -28 + 11k + k2 = 28 + -28 + k2

Combine like terms: 28 + -28 = 0
0 + 11k + k2 = 28 + -28 + k2
11k + k2 = 28 + -28 + k2

Combine like terms: 28 + -28 = 0
11k + k2 = 0 + k2
11k + k2 = k2

Add '-1k2' to each side of the equation.
11k + k2 + -1k2 = k2 + -1k2

Combine like terms: k2 + -1k2 = 0
11k + 0 = k2 + -1k2
11k = k2 + -1k2

Combine like terms: k2 + -1k2 = 0
11k = 0

Solving
11k = 0

Solving for variable 'k'.

Move all terms containing k to the left, all other terms to the right.

Divide each side by '11'.
k = 0

Simplifying
k = 0

See similar equations:

| 3(2x).3(2y)=81 | | 3(4k+14)=2(4k+7) | | 280=2L+2(.66) | | 2x-33+2x+26=180 | | 2x+26=2x-33 | | (7w-5)(2w+3u+6)= | | 2x-33=2x+26 | | 280=2l+2*2/3 | | -8x^2-28x-19=0 | | 1/10-4 | | 1/10*(14-10) | | x^4-4x^25=0 | | 91/2-72/5 | | (9x+2)^2/5 | | 4(2k+7)=-2(k-29) | | -5/(x+2)=-8+1/(x+1) | | 5/21/25/77 | | 2a/-7b*-7a^2/6 | | 1=y-5 | | x^2+32x-768=0 | | 3/4+3/16+1/64 | | 1=y-x | | 2-7x-3x+5=67 | | 3j-18=2(3j+5)-1 | | -7/(x-3)=1/(2x-6)+1 | | 29=5+12+c | | 3x/2=10 | | x^2-4y+4=0 | | 5x+2x=5x+40 | | 7k^2+66k+21=0 | | 13+(-3)= | | 3x^4+2x^3-12x^2-8x=0 |

Equations solver categories